189 research outputs found

    Safe Robotic Grasping: Minimum Impact-Force Grasp Selection

    Full text link
    This paper addresses the problem of selecting from a choice of possible grasps, so that impact forces will be minimised if a collision occurs while the robot is moving the grasped object along a post-grasp trajectory. Such considerations are important for safety in human-robot interaction, where even a certified "human-safe" (e.g. compliant) arm may become hazardous once it grasps and begins moving an object, which may have significant mass, sharp edges or other dangers. Additionally, minimising collision forces is critical to preserving the longevity of robots which operate in uncertain and hazardous environments, e.g. robots deployed for nuclear decommissioning, where removing a damaged robot from a contaminated zone for repairs may be extremely difficult and costly. Also, unwanted collisions between a robot and critical infrastructure (e.g. pipework) in such high-consequence environments can be disastrous. In this paper, we investigate how the safety of the post-grasp motion can be considered during the pre-grasp approach phase, so that the selected grasp is optimal in terms applying minimum impact forces if a collision occurs during a desired post-grasp manipulation. We build on the methods of augmented robot-object dynamics models and "effective mass" and propose a method for combining these concepts with modern grasp and trajectory planners, to enable the robot to achieve a grasp which maximises the safety of the post-grasp trajectory, by minimising potential collision forces. We demonstrate the effectiveness of our approach through several experiments with both simulated and real robots.Comment: To be appeared in IEEE/RAS IROS 201

    Haptic-guided assisted telemanipulation approach for grasping desired objects from heaps

    Full text link
    This paper presents an assisted telemanipulation framework for reaching and grasping desired objects from clutter. Specifically, the developed system allows an operator to select an object from a cluttered heap and effortlessly grasp it, with the system assisting in selecting the best grasp and guiding the operator to reach it. To this end, we propose an object pose estimation scheme, a dynamic grasp re-ranking strategy, and a reach-to-grasp hybrid force/position trajectory guidance controller. We integrate them, along with our previous SpectGRASP grasp planner, into a classical bilateral teleoperation system that allows to control the robot using a haptic device while providing force feedback to the operator. For a user-selected object, our system first identifies the object in the heap and estimates its full six degrees of freedom (DoF) pose. Then, SpectGRASP generates a set of ordered, collision-free grasps for this object. Based on the current location of the robot gripper, the proposed grasp re-ranking strategy dynamically updates the best grasp. In assisted mode, the hybrid controller generates a zero force-torque path along the reach-to-grasp trajectory while automatically controlling the orientation of the robot. We conducted real-world experiments using a haptic device and a 7-DoF cobot with a 2-finger gripper to validate individual components of our telemanipulation system and its overall functionality. Obtained results demonstrate the effectiveness of our system in assisting humans to clear cluttered scenes.Comment: Accepted to 2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC

    Unsupervised learning-based approach for detecting 3D edges in depth maps

    Get PDF
    3D edge features, which represent the boundaries between different objects or surfaces in a 3D scene, are crucial for many computer vision tasks, including object recognition, tracking, and segmentation. They also have numerous real-world applications in the field of robotics, such as vision-guided grasping and manipulation of objects. To extract these features in the noisy real-world depth data, reliable 3D edge detectors are indispensable. However, currently available 3D edge detection methods are either highly parameterized or require ground truth labelling, which makes them challenging to use for practical applications. To this extent, we present a new 3D edge detection approach using unsupervised classification. Our method learns features from depth maps at three different scales using an encoder-decoder network, from which edge-specific features are extracted. These edge features are then clustered using learning to classify each point as an edge or not. The proposed method has two key benefits. First, it eliminates the need for manual fine-tuning of data-specific hyper-parameters and automatically selects threshold values for edge classification. Second, the method does not require any labelled training data, unlike many state-of-the-art methods that require supervised training with extensive hand-labelled datasets. The proposed method is evaluated on five benchmark datasets with single and multi-object scenes, and compared with four state-of-the-art edge detection methods from the literature. Results demonstrate that the proposed method achieves competitive performance, despite not using any labelled data or relying on hand-tuning of key parameters.</p
    • …
    corecore